Tachyon: An open source, distributed, fault-tolerant, in-memory file system

[A version of this post appears on the O’Reilly Strata blog.]

In earlier posts I’ve written about how Spark and Shark run much faster than Hadoop and Hive by1 caching data sets in-memory. But suppose one wants to share datasets across jobs/frameworks, while retaining speed gains garnered by being in-memory? An example would be performing computations using Spark, saving it, and accessing the saved results in Hadoop MapReduce. An in-memory storage system would speed up sharing across jobs by allowing users to save at near memory speeds. In particular the main challenge is being able to do memory-speed “writes” while maintaining fault-tolerance.

In-memory storage system from UC Berkeley’s AMPLab
The team behind the BDAS stack recently released a developer preview of Tachyon – an in-memory, distributed, file system. The current version of Tachyon was written in Java and supports Spark, Shark, and Hadoop MapReduce. Working data sets can be loaded into Tachyon where they can be accessed at memory speed, by many concurrent users. Tachyon implements the HDFS FileSystem interface for standard file operations (such as create, open, read, write, close, and delete).

Continue reading “Tachyon: An open source, distributed, fault-tolerant, in-memory file system”

Simpler workflow tools enable the rapid deployment of models

[A version os this post appears on the O’Reilly Strata blog.]

Data science often depends on data pipelines, that involve acquiring, transforming, and loading data. (If you’re fortunate most of the data you need is already in usable form.) Data needs to be assembled and wrangled, before it can be visualized and analyzed. Many companies have data engineers (adept at using workflow tools like Azkaban and Oozie), who manage1 pipelines for data scientists and analysts.

A workflow tool for data analysts: Chronos from airbnb
A raw bash scheduler written in Scala, Chronos is flexible, fault-tolerant2, and distributed (it’s built on top of Mesos). What’s most interesting is that it makes the creation and maintenance of complex workflows more accessible: at least within airbnb, it’s heavily used by analysts.

Job orchestration and scheduling tools contain features that data scientists would appreciate. They make it easy for users to express dependencies (start a job upon the completion of another job), and retries (particularly in cloud computing settings, jobs can fail for a variety of reasons). Chronos comes with a web UI designed to let business analysts3 define, execute, and monitor workflows: a zoomable DAG highlights failed jobs and displays stats that can be used to identify bottlenecks. Chronos lets you include asynchronous jobs – a nice feature for data science pipelines that involve long-running calculations. It also lets you easily define repeating jobs over a finite time interval, something that comes in handy for short-lived4 experiments (e.g. A/B tests or multi-armed bandits).

Continue reading “Simpler workflow tools enable the rapid deployment of models”

Single server systems can tackle Big Data

[A version of this post appears on the O’Reilly Strata blog.]

About a year ago a blog post from SAP posited1 that when it comes to analytics, most companies are in the multi-terabyte range: data sizes that are well-within the scope of distributed in-memory solutions like Spark, SAP HANA, ScaleOut Software, GridGain, and Terracotta.

Continue reading “Single server systems can tackle Big Data”

The re-emergence of Time-series

[A version of this post appeared on the O’Reilly Strata and Radar blogs.]

My first job after leaving academia was as a quant1 for a hedge fund, where I performed (what are now referred to as) data science tasks on financial time-series. I primarily used techniques from probability & statistics, econometrics, and optimization, with occasional forays into machine-learning (clustering, classification, anomalies). More recently, I’ve been closely following the emergence of tools that target large time series and decided to highlight a few interesting bits.

Time-series and big data:
Over the last six months I’ve been encountering more data scientists (outside of finance) who work with massive amounts of time-series data. The rise of unstructured data has been widely reported, the growing importance of time-series much less so. Sources include data from consumer devices (gesture recognition & user interface design), sensors (apps for “self-tracking”), machines (systems in data centers), and health care. In fact some research hospitals have troves of EEG and ECG readings that translate to time-series data collections with billions (even trillions) of points.

Continue reading “The re-emergence of Time-series”