[A version of this post appears on the O’Reilly Strata blog.]

I’ve been noticing unlikely areas of mathematics pop-up in data analysis. While signal processing is a natural fit, topology, differential and algebraic geometry aren’t exactly areas you associate with data science. But upon further reflection perhaps it shouldn’t be so surprising that areas that deal in shapes, invariants, and dynamics, in high-dimensions, would have something to contribute to the analysis of large data sets. Without further ado, here are a few examples that stood out for me. (If you know of other examples of recent applications of math in data analysis, please share them in the comments.)

**Compressed Sensing**

Compressed sensing is a signal processing technique which makes efficient data collection possible. As an example using compressed sensing images can be reconstructed from small amounts of data. *Idealized Sampling* is used to collect information to measure the most important components. By vastly decreasing the number of measurements to be collected, less data needs to stored, and one reduces the amount of time and energy^{1} needed to collect signals. Already there have been applications in medical imaging and mobile phones.

The problem is you don’t know ahead of time which signals/components are important. A series of numerical experiments led Emanuel Candes to believe that random samples may be the answer. The theoretical foundation as to why a random set of signals would work, where laid down in a series of papers by Candes and Fields Medalist Terence Tao^{2}.