Moving from Batch to Continuous Computing at Yahoo!

[A version of this post appeared on the O’Reilly Strata blog.]

My favorite session at the recent Hadoop Summit was a keynote by Bruno Fernandez-Ruiz, Senior Fellow & VP Platforms at Yahoo! He gave a nice overview of their analytic and data processing stack, and shared some interesting factoids about the scale of their big data systems. Notably many of their production systems now run on MapReduce 2.0 (MRv2) or YARN – a resource manager that lets multiple frameworks share the same cluster.

Yahoo! was the first company to embrace Hadoop in a big way, and it remains a trendsetter within the Hadoop ecosystem. In the early days the company used Hadoop for large-scale batch processing (the key example being, computing their web index for search). More recently, many of its big data models require low latency alternatives to Hadoop MapReduce. In particular, Yahoo! leverages user and event data to power its targeting, personalization, and other “real-time” analytic systems. Continuous Computing is a term Yahoo! uses to refer to systems that perform computations over small batches of data (over short time windows), in between traditional batch computations that still use Hadoop MapReduce. The goal is to be able to quickly move from raw data, to information, to knowledge:

Continue reading “Moving from Batch to Continuous Computing at Yahoo!”

Analytic engines that factor in security labels

[A version of this post appears on the O’Reilly Strata blog.]

Originated by the NSA, Apache Accumulo is a BigTable inspired data store known for being highly scalable and for its interesting security model. Federal agencies and Defense contractors have deployed Accumulo on clusters of a thousand or more servers. It also uses “cell-level” security to control access to values stored in individual cells1.

What Accumulo was lacking were easy-to-use, standard analytic engines that allow users to interact with data. The release of Sqrrl Enterprise this past week fills that gap. Sqrrl Enterprise provides an initial set of analytic engines for the Accumulo ecosystem2. It includes support for interactive SQL, fulltext search, and queries over graph data. Each of these engines takes into account security labels placed on data: since every data object ingested into Sqrrl has a security label, (query & analytic) results incorporate those access levels. Analysts interact with data as they normally would. For example Sqrrl’s indexing technology accounts for security labels, and search queries are written in standard Lucene syntax. Reminiscent of the Phoenix project for HBase3, SQL queries4 in Sqrrl are converted into optimized Accumulo iterators.

Continue reading “Analytic engines that factor in security labels”

HBase looks more appealing to data scientists

[A version of this post appears on the O’Reilly Strata blog.]

When Hadoop users need to develop apps that are “latency sensitive”, many of them turn to HBase1. Its tight integration with Hadoop makes it a popular data store for real-time applications. When I attended the first HBase conference last year, I was pleasantly surprised by the diversity of companies and applications that rely on HBase. This year’s conference was even bigger and I ran into attendees from a wide range of companies. Another set of interesting real-world case studies were showcased, along with sessions highlighting work of the HBase team aimed at improving usability, reliability, and availability (bringing down mean time to recovery has been a recent area of focus).

HBase: lines of code

HBase has had a reputation of being a bit difficult to use – its core users have been data engineers, not data scientists. The good news is that as HBase gets adopted by more companies, tools are being developed to open it up to more users. Let me highlight some tools that will appeal to data scientists.

Continue reading “HBase looks more appealing to data scientists”

It’s getting easier to build Big Data Applications

[A version of this post appears on the O’Reilly Strata blog.]

Hadoop’s low-cost, scale-out architecture has made it a new platform for data storage. With a storage system in place, the Hadoop community is slowly building a collection of open source, analytic engines. Beginning with batch processing (MapReduce, Pig, Hive), Cloudera has added interactive SQL (Impala), analytics (Cloudera ML + a partnership with SAS), and as of early this week, real-time search. The economics that led to Hadoop dominating batch processing is permeating other types of analytics.

Another collection of open source, Hadoop-compatible analytic engines, the Berkeley Data Analytics Stack (BDAS), is being built just across the San Francisco Bay. Starting with a batch-processing framework that’s faster than MapReduce (Spark), it now includes interactive SQL (Shark), and real-time analytics (Spark Streaming). Sometime this summer, frameworks for machine-learning (MLbase) and graph analytics (GraphX) will be released. A cluster manager (Mesos) and an in-memory file system (Tachyon) allow users of other analytic frameworks to leverage the BDAS platform. (The Python data community is looking at Tachyon closely.)

Continue reading “It’s getting easier to build Big Data Applications”

Tracking the progress of large-scale Query Engines

[A version of this post appears on the O’Reilly Strata blog.]

As organizations continue to accumulate data, there has been renewed interest in interactive query engines that scale to terabytes (even petabytes) of data. Traditional MPP databases remain in the mix, but other options are attracting interest. For example, companies willing to upload data into the cloud are beginning to explore Amazon Redshift1, Google BigQuery, and Qubole.

A variety of analytic engines2 built for Hadoop are allowing companies to bring its low-cost, scale-out architecture to a wider audience. In particular, companies are rediscovering that SQL makes data accessible to lots of users, and many prefer3 not having to move data to a separate (MPP) cluster. There are many new tools that seek to provide an interactive SQL interface to Hadoop, including Cloudera’s Impala, Shark, Hadapt, CitusDB, Pivotal-HD, PolyBase4, and SQL-H.

An open source benchmark from UC Berkeley’s Amplab
A benchmark for tracking the progress5 of scalable query engines has just been released. It’s a worthy first effort, and its creators hope to grow the list of tools to include other open source (Drill, Stinger) and commercial6 systems. As these query engines mature and features get added, data from this benchmark can provide a quick synopsis of performance improvements over time.

The initial release includes Redshift, Hive, Impala, and Shark (Hive, Impala, Shark were configured to run on AWS). Hive 0.10 and the most recent versions7 of Impala and Shark were used (Hive 0.11 was released in mid-May and has not yet been included). Data came from Intel’s Hadoop Benchmark Suite and CommonCrawl. In the case of Hive/Impala/Shark, data was stored in compressed SequenceFile format using CDH 4.2.0.

Initial Findings
At least for the queries included in the benchmark, Redshift is about 2-3x faster than Shark/on-disk, and 0.3-2x faster than Shark/in-memory. Given that it’s built on top of a general purpose engine (Spark), it’s encouraging that Shark’s performance is within range of MPP8 databases (such as Redshift) that are highly optimized for interactive SQL queries. With new frameworks like Shark and Impala providing speedups comparable to those observed in MPP databases, organizations now have the option of using a single system (Hadoop/Spark) instead of two (Hadoop/Spark + MPP database).

Let’s look at some of the results in detail:

Continue reading “Tracking the progress of large-scale Query Engines”