Data Wrangling gets a fresh look

[A version of this post appears on the O’Reilly Strata blog.]

Data analysts have long lamented the amount of time they spend on data wrangling. Rightfully so, as some estimates suggest they spend a majority of their time on it. The problem is compounded by the fact that these days, data scientists are encouraged to cast their nets wide, and investigate alternative (unstructured) data sources. The general perception is that data wrangling is the province of programmers and data scientists. Spend time around Excel users and you’ll learn that they do quite a bit of data wrangling too!

In my work I tend to write scripts and small programs to do data wrangling. That usually means some combination1 of SQL, Python, and Spark2. I’ve played with Google Refine (now called OpenRefine) in the past, but I found the UI hard to get used to. Part of the problem may have been that I didn’t use the tool often3 enough to become comfortable.

For most users data wrangling still tends to mean a series of steps that usually involves different tools (e.g., you often need to draw charts to spot outliers and anomalies). As I’ve pointed out in previous posts, workflows that involve many different tools require a lot of context-switching, which in turn affects productivity and impedes reproducability.

“We are washing our data at the side of the river on stones. We are really in the early, early ages of productivity technology in data science.”
Joe Hellerstein (Strata-NYC 2012), co-founder and CEO of Trifacta

Continue reading “Data Wrangling gets a fresh look”

How companies are using Spark

[A version of this post appears on the O’Reilly Strata blog.]

When an interesting piece of big data technology gets introduced, early1 adopters tend to focus on technical features and capabilities. Applications get built as companies develop confidence that it’s reliable and that it really scales to large data volumes. That seems to be where Spark is today. With over 90 contributors from 25 companies, it has one of the largest developer communities among big data projects (second only to Hadoop MapReduce).

Spark Growth by Numbers

I recently became an advisor to Databricks (a startup commercializing Spark) and a member of the program committee for the inaugural Spark Summit. As I pored over submissions to Spark’s first community gathering, I learned how companies have come to rely on Spark, Shark, and other components of the Berkeley Data Analytics Stack (BDAS). Spark is at that stage where companies are deploying it, and the upcoming Spark Summit in San Francisco will showcase many real-world applications. These applications cut across many domains including advertising, marketing, finance, and academic/scientific research, but can generally be grouped into the following categories:

Data processing workflows: ETL and Data Wrangling
Many companies rely on a wide variety of data sources for their analytic products. That means cleaning, transforming, and fusing (unstructured) external data with internal data sources. Many companies – particularly startups – use Spark for these types of data processing workflows. There are even companies that have created simple user interfaces that open up batch data processing tasks to non-programmers.

Continue reading “How companies are using Spark”

Simplifying interactive, realtime, and advanced analytics

[A version of this post appears on the O’Reilly Strata blog and Forbes.]

Here are a few observations based on conversations I had during the just concluded Strata NYC conference.

Interactive query analysis on Hadoop remains a hot area
A recent O’Reilly survey confirmed SQL is an important skill for data scientists. A year after the launch of Impala, quite a few attendees I spoke with remained interested in the progress of SQL-on-Hadoop solutions. A trio from Hortonworks gave an update on recent improvements and changes to Hive1. A sign that Impala is gaining traction, Greg Rahn’s talk on Practical Performance Tuning for Impala was one of the best attended sessions in the conference. Ditto for a sponsored session on Kognitio’s latest features.

Existing SQL-on-Hadoop solutions require that users define a schema – an additional step given that a lot of data is increasingly in key-value or JSON format. In his talk Hadapt co-founder Daniel Abadi highlighted a solution2 that lets users query complex data types (Hadapt reserializes complex data types to speed up joins). I expect other SQL-on-Hadoop solutions to also offer query support for complex data types in the near future.

Empowering business users
With its launch at the conference, ClearStory joins Platfora and Datameer in the business analytics space. Each company builds tools that lets business users wade through large amounts of data, while emphasizing different areas. Platfora is for interactive visual analysis of massive data sets, while Datameer connects to many data sources (not just Hadoop), has started offering analytics, and can run on a laptop or cluster. Built primarily on the Berkeley stack (BDAS), ClearStory’s interesting platform encourages collaboration and simplifies data harmonization (fusing disparate data sources is a common bottleneck for business users). For organizations willing to tag and describe their data sets, Microsoft unveiled a tool that lets users query data using natural language (UK startup NeutrinoBI uses a similar “search interface”).

Continue reading “Simplifying interactive, realtime, and advanced analytics”