Machine intelligence for content distribution, logistics, smarter cities, and more

[A version of this post appears on the O’Reilly Radar.]

The O’Reilly Data Show Podcast: Rhea Liu on technology trends in China.

In this episode of the Data Show, I spoke with Rhea Liu, analyst at China Tech Insights, a new research firm that is part of Tencent’s Online Media Group. If there’s one place where AI and machine learning are discussed even more than the San Francisco Bay Area, that would be China. Each time I go to China, there are new applications that weren’t widely available just the year before. This year, it was impossible to miss bike sharing, mobile payments seemed to be accepted everywhere, and people kept pointing out nascent applications of computer vision (facial recognition) to identity management and retail (unmanned stores).

I wanted to consult local market researchers to help make sense of some of the things I’ve been observing from afar. Liu and her colleagues have put out a series of interesting reports highlighting some of these important trends. They also have an annual report—Trends & Predictions for China’s Tech Industry in 2018—that Liu will discuss in her keynote and talk at Strata Data Singapore in December.

Here are some highlights from our conversation:
Continue reading “Machine intelligence for content distribution, logistics, smarter cities, and more”

How companies can navigate the age of machine learning

[A version of this post appears on the O’Reilly Radar.]

To become a “machine learning company,” you need tools and processes to overcome challenges in data, engineering, and models.

Over the last few years, the data community has focused on gathering and collecting data, building infrastructure for that purpose, and using data to improve decision-making. We are now seeing a surge in interest in advanced analytics and machine learning across many industry verticals.

In this post, I share slides and notes from a talk I gave this past September at Strata Data NYC offering suggestions to companies interested in adding machine learning capabilities. The information stems from conversations with practitioners, researchers, and entrepreneurs at the forefront of applying machine learning across many different problem domains.
Continue reading “How companies can navigate the age of machine learning”

Vehicle-to-vehicle communication networks can help fuel smart cities

[A version of this post appears on the O’Reilly Radar.]

The O’Reilly Data Show Podcast: Bruno Fernandez-Ruiz on the importance of building the ground control center of the future.

In this episode of the Data Show, I spoke with Bruno Fernandez-Ruiz, co-founder and CTO of Nexar. We first met when he was leading Yahoo! technical teams charged with delivering a variety of large-scale, real-time data products. His new company is helping build out critical infrastructure for the emerging transportation sector.

While some question whether V2X communication is necessary to get to fully autonomous vehicles, Nexar is already paving the way by demonstrating how a vehicle-to-vehicle (V2V) communication network can be built efficiently. As Fernandez-Ruiz points out, there are many applications for such a V2V network (safety being the most obvious one). I’m particularly fascinated by what such a network, and the accompanying data, opens up for future, smarter cities. As I pointed out in a post on continuous learning, simulations are an important component of training AI applications. It seems reasonable to expect that the data sets collected by V2V networks will be useful for smart city planners of the future.

Continue reading “Vehicle-to-vehicle communication networks can help fuel smart cities”