The Financial Services Sector’s March into Generative AI

During my time as a quant at a hedge fund, I was struck by the asset management industry’s willingness to adopt cutting-edge technologies. Hedge funds are constantly looking for new ways to gain an edge in the increasingly competitive financial markets. They are quick to invest in and experiment with novel technologies and data streams in the hopes of finding a competitive edge.

As the world shifts towards an AI-driven future, the Financial Services and Banking sector (FSB) is once again at the forefront of innovation. I recently examined the largest companies in this space and detected strong interest in Generative AI (GAI) and Large Language Models (LLMs). Recent job postings indicate that outside the technology domain, the most pronounced demand for GAI expertise is rooted in the FSB industry:

These technologies have the potential to transform the way the FSB sector operates, providing new opportunities for efficiency, personalization, and risk management. LLMs can efficiently process large amounts of unstructured data and provide deeper insights into market dynamics. This is just the tip of the iceberg, as GAI and LLMs can be used for a wide range of use cases, from predictive analytics and real-time insights to automation in reporting.

Generative AI Use Cases

Not many GAI and LLM solutions are all tailored to meet the stringent requirements of the financial services industry. It’s also worth noting that many GAI and LLM startups I’ve encountered lean towards the creation of general-purpose tools. However, as our discussions on Pegacorns have highlighted, startups that target specific domains and applications often attain greater success and relevance. Domain specificity is crucial, especially in an intricate sector like the FSB.

Despite the interest in GAI and LLM technologies in the FSB sector, keep in mind that most projects are still in the early stages of development. GAI and LLMs are complex technologies that necessitate specialized expertise for their safe development and deployment, especially in finance where the applications often have stringent requirements. Additionally, the FSB sector is heavily regulated, which adds an additional layer of complexity to any AI project.  Using the example of a recent article where I explored the specialized system of entity resolution, it becomes evident how swiftly AI undertakings can escalate in complexity. Both entity resolution and master data management, which merge big data with real-time processing and AI-driven strategies, highlight the intricate nature of modern enterprise AI applications.

Nonetheless, GAI and LLMs are beginning to enable novel prototypes across a wide range of functions. At the heart of this potential revolution is the capability to process and unlock vast swathes of data. For instance, financial powerhouses like Goldman Sachs have harnessed AI’s power to efficiently extract and categorize data from a multitude of documents. Meanwhile, Citigroup delves into the nuances of unstructured data—from emails to intricate legal documents—seeking out valuable insights and patterns.

Process automation, too, has undergone a significant metamorphosis. Citigroup, for example, is beginning to use Generative AI for tasks as complex as code writing and desk-based research. No longer confined to the domain of the tech-savvy, non-technical employees at institutions such as Goldman Sachs can now automate tasks, with LLMs serving as a potent tool.

An overview of nascent applications of GAI & LLMs in financial services.

These tools go beyond simple data management and process improvement. They can also potentially transform vital areas of risk and fraud management.  Wells Fargo is beginning to use these technologies for robust risk assessment and detecting fraudulent activities. 

Customer and investor relations, often the lifeblood of financial institutions, won’t be left untouched either. AI-driven initiatives are enhancing customer service and facilitating the generation of investment opinions. Firms like J.P Morgan and Truist Financial Corp are exploring the vast potential of LLMs in understanding and catering to their clientele better. Additionally, American Express is using AI for product personalization, ensuring an ever-evolving, customer-centric approach.

Beyond these, the purview of Generative AI in the FSB sector stretches into compliance, market analysis, and even strategy formulation. Whether it’s upholding rigorous regulatory standards or crafting insightful investment strategies, companies such as Wells Fargo and American Express are starting to demonstrate the practical integration of Generative AI in finance.

Key Challenges

The potential of Generative AI and LLMs to enhance and transform the financial landscape is immense, especially as these applications become capable of scaling to a large user base, rapidly process vast torrents of real-time data, and deliver prompt, reliable responses.

Some key challenges facing Banks and Financial Services companies who want to adopt GAI and LLMs.

However, the journey of integrating these innovations into the FSB sector isn’t without its hurdles. As one of the most heavily regulated industries, the Financial Services sector needs more than just groundbreaking technology; it demands assurance, compliance, and meticulous attention to detail. This raises a spectrum of challenges, from training models to make financially sound decisions, to grappling with issues like job displacement and the evolving landscape of patenting AI tools. These aren’t mere technical problems; they represent significant socio-economic, legal, and operational dimensions.


In conclusion, Generative AI and Large Language Models are drawing strong interest within the  Financial Services and Banking sector. These technologies can potentially improve efficiency, personalization, and risk management in a variety of ways. However, there are also challenges to the adoption of GAI and LLMs in the FSB sector, such as the need for domain specific models, regulatory compliance, and the potential for job displacement. By focusing on addressing the specific challenges of the financial services sector, startups and vendors can help to pave the way for the widespread adoption of GAI and LLMs in this industry.

Join us at the AI Conference in San Francisco (Sep 26-27) to network with the pioneers of AI and LLM applications and learn about the latest advances in Generative AI and ML.

If you enjoyed this post please support our work by encouraging your friends and colleagues to subscribe to our newsletter:

%d bloggers like this: