Vehicle-to-vehicle communication networks can help fuel smart cities

[A version of this post appears on the O’Reilly Radar.]

The O’Reilly Data Show Podcast: Bruno Fernandez-Ruiz on the importance of building the ground control center of the future.

In this episode of the Data Show, I spoke with Bruno Fernandez-Ruiz, co-founder and CTO of Nexar. We first met when he was leading Yahoo! technical teams charged with delivering a variety of large-scale, real-time data products. His new company is helping build out critical infrastructure for the emerging transportation sector.

While some question whether V2X communication is necessary to get to fully autonomous vehicles, Nexar is already paving the way by demonstrating how a vehicle-to-vehicle (V2V) communication network can be built efficiently. As Fernandez-Ruiz points out, there are many applications for such a V2V network (safety being the most obvious one). I’m particularly fascinated by what such a network, and the accompanying data, opens up for future, smarter cities. As I pointed out in a post on continuous learning, simulations are an important component of training AI applications. It seems reasonable to expect that the data sets collected by V2V networks will be useful for smart city planners of the future.

Continue reading “Vehicle-to-vehicle communication networks can help fuel smart cities”

Transforming organizations through analytics centers of excellence

[A version of this post appears on the O’Reilly Radar blog.]

The O’Reilly Data Show Podcast: Carme Artigas on helping enterprises transform themselves with big data tools and technologies.

In this episode of the Data Show, I spoke with Carme Artigas, co-founder and CEO of Synergic Partners (a Telefonica company). As more companies adopt big data technologies and techniques, it’s useful to remember that the end goal is to extract information and insight. In fact, as with any collection of tools and technologies, the main challenge is identifying and prioritizing use cases.

As Artigas describes, one can categorize use cases for big data into the following types:

  • Improve decision-making or operational efficiency
  • Generate new or additional revenue
  • Predict or prevent fraud (forecasting or minimizing risks)

Artigas has spent many years helping large organizations develop best practices for how to use data and analytics. We discussed some of the key challenges faced by organizations that wish to adopt big data technologies, centers of excellence for analytics, and AI in the enterprise.
Continue reading “Transforming organizations through analytics centers of excellence”

The state of machine learning in Apache Spark

[A version of this post appears on the O’Reilly Radar.]

The O’Reilly Data Show Podcast: Ion Stoica and Matei Zaharia explore the rich ecosystem of analytic tools around Apache Spark.

In this episode of the Data Show, we look back to a recent conversation I had at the Spark Summit in San Francisco with Ion Stoica (UC Berkeley professor and executive chairman of Databricks) and Matei Zaharia (assistant professor at Stanford and chief technologist of Databricks). Stoica and Zaharia were core members of UC Berkeley’s AMPLab, which originated Apache Spark, Apache Mesos, and Alluxio.

We began our conversation by discussing recent academic research that would be of interest to the Apache Spark community (Stoica leads the RISE Lab at UC Berkeley, Zaharia is part of Stanford’s DAWN Project). The bulk of our conversation centered around machine learning. Like many in the audience, I was first attracted to Spark because it simultaneously allowed me to scale machine learning algorithms to large data sets while providing reasonable latency.

Here is a partial list of the items we discussed:

  • The current state of machine learning in Spark.
  • Given that a lot of innovation has taken place outside the Spark community (e.g., scikit-learn, TensorFlow, XGBoost), we discussed the role of Spark ML moving forward.
  • The plan to make it easier to integrate advanced analytics libraries that aren’t “textbook machine learning,” like NLP, time series analysis, and graph analysis into Spark and Spark ML pipelines.
  • Some upcoming projects from Berkeley and Stanford that target AI applications (including newer systems that provide lower latency, higher throughput).
  • Recent Berkeley and Stanford projects that address two key bottlenecks in machine learning — lack of training data, and deploying and monitoring models in production.

[Full disclosure: I am an advisor to Databricks.]

Related resources:

Effective mechanisms for searching the space of machine learning algorithms

[A version of this post appears on the O’Reilly Radar.]

The O’Reilly Data Show Podcast: Kenneth Stanley on neuroevolution and other principled ways of exploring the world without an objective.

In this episode of the Data Show, I spoke with Ken Stanley, founding member of Uber AI Labs and associate professor at the University of Central Florida. Stanley is an AI researcher and a leading pioneer in the field of neuroevolution—a method for evolving and learning neural networks through evolutionary algorithms. In a recent survey article, Stanley went through the history of neuroevolution and listed recent developments, including its applications to reinforcement learning problems.

Stanley is also the co-author of a book entitled Why Greatness Cannot Be Planned: The Myth of the Objective—a book I’ve been recommending to anyone interested in innovation, public policy, and management. Inspired by Stanley’s research in neuroevolution (into topics like novelty search and open endedness), the book is filled with examples of how notions first uncovered in the field of AI can be applied to many other disciplines and domains.

The book closes with a case study that hits closer to home—the current state of research in AI. One can think of machine learning and AI as a search for ever better algorithms and models. Stanley points out that gatekeepers (editors of research journals, conference organizers, and others) impose two objectives that researchers must meet before their work gets accepted or disseminated: (1) empirical: their work should beat incumbent methods on some benchmark task, and (2) theoretical: proposed new algorithms are better if they can be proven to have desirable properties. Stanley argues this means that interesting work (“stepping stones”) that fail to meet either of these criteria fall by the wayside, preventing other researchers from building on potentially interesting but incomplete ideas.
Continue reading “Effective mechanisms for searching the space of machine learning algorithms”

How Ray makes continuous learning accessible and easy to scale

[A version of this post appears on the O’Reilly Radar.]

The O’Reilly Data Show Podcast: Robert Nishihara and Philipp Moritz on a new framework for reinforcement learning and AI applications.

Subscribe to the O’Reilly Data Show Podcast to explore the opportunities and techniques driving big data, data science, and AI. Find us on StitcherTuneIniTunesSoundCloudRSS.

In this episode of the Data Show, I spoke with Robert Nishihara and Philipp Moritz, graduate students at UC Berkeley and members of RISE Lab. I wanted to get an update on Ray, an open source distributed execution framework that makes it easy for machine learning engineers and data scientists to scale reinforcement learning and other related continuous learning algorithms. Many AI applications involve an agent (for example a robot or a self-driving car) interacting with an environment. In such a scenario, an agent will need to continuously learn the right course of action to take for a specific state of the environment.

What do you need in order to build large-scale continuous learning applications? You need a framework with low-latency response times, one that is able to run massive numbers of simulations quickly (agents need to be able explore states within an environment), and supports heterogeneous computation graphs. Ray is a new execution framework written in C++ that contains these key ingredients. In addition, Ray is accessible via Python (and Jupyter Notebooks), and comes with many of the standard reinforcement learning and related continuous learning algorithms that users can easily call.

As Nishihara and Moritz point out, frameworks like Ray are also useful for common applications such as dialog systems, text mining, and machine translation. Here are some highlights from our conversation:

Tools for reinforcement learning

Ray is something we’ve been building that’s motivated by our own research in machine learning and reinforcement learning. If you look at what researchers who are interested in reinforcement learning are doing, they’re largely ignoring the existing systems out there and building their own custom frameworks or custom systems for every new application that they work on.

… For reinforcement learning, you need to be able to share data very efficiently, without copying it between multiple processes on the same machine, you need to be able to avoid expensive serialization and deserialization, and you need to be able to create a task and get the result back in milliseconds instead of hundreds of milliseconds. So, there are a lot of little details that come up.
Continue reading “How Ray makes continuous learning accessible and easy to scale”

Why AI and machine learning researchers are beginning to embrace PyTorch

[A version of this post appears on the O’Reilly Radar.]

The O’Reilly Data Show Podcast: Soumith Chintala on building a worthy successor to Torch and deep learning within Facebook.

Subscribe to the O’Reilly Data Show Podcast to explore the opportunities and techniques driving big data, data science, and AI. Find us on Stitcher, TuneIn, iTunes, SoundCloud, RSS.

In this episode of the Data Show, I spoke with Soumith Chintala, AI research engineer at Facebook. Among his many research projects, Chintala was part of the team behind DCGAN (Deep Convolutional Generative Adversarial Networks), a widely cited paper that introduced a set of neural network architectures for unsupervised learning. Our conversation centered around PyTorch, the successor to the popular Torch scientific computing framework. PyTorch is a relatively new deep learning framework that is fast becoming popular among researchers. Like Chainer, PyTorch supports dynamic computation graphs, a feature that makes it attractive to researchers and engineers who work with text and time-series.

Here are some highlights from our conversation:

The origins of PyTorch

TensorFlow addressed one part of the problem, which is quality control and packaging. It offered a Theano style programming model, so it was a very low-level deep learning framework. … There are a multitude of front ends that are trying to cope with the fact that TensorFlow is a very low-level framework—there’s TF-slim, there’s Keras. I think there’s like 10 or 15, and just from Google there’s probably like four or five of those.
Continue reading “Why AI and machine learning researchers are beginning to embrace PyTorch”

How big data and AI will reshape the automotive industry

[A version of this post appears on the O’Reilly Radar.]

The O’Reilly Data Show Podcast: Evangelos Simoudis on next-generation mobility services.

Subscribe to the O’Reilly Data Show Podcast to explore the opportunities and techniques driving big data, data science, and AI. Find us on StitcherTuneIniTunesSoundCloudRSS.

In this episode of the Data Show, I spoke with Evangelos Simoudis, co-founder of Synapse Partners and a frequent contributor to O’Reilly. He recently published a book entitled The Big Data Opportunity in Our Driverless Future, and I wanted get his thoughts on the transportation industry and the role of big data and analytics in its future. Simoudis is an entrepreneur, and he also advises and invests in many technology startups. He became interested in the automotive industry long before the current wave of autonomous vehicle startups was in the planning stages.


Continue reading “How big data and AI will reshape the automotive industry”